APPENDIX C

EQUATIONS AND PARAMETER VALUES FOR CALCULATING COPC-SPECIFIC MEDIA CONCENTRATIONS

(38 Pages)

APPENDIX C TABLE OF CONTENTS

EQU A	ATION _	<u>PAGE</u>
SOIL	INGESTION EQUATIONS	
C-1	SOIL CONCENTRATION DUE TO DEPOSITION	C-1
C-2	COPC SOIL LOSS CONSTANT	
C-3	SOIL LOSS CONSTANT DUE TO SOIL EROSION	
C-4	COPC LOSS CONSTANT DUE TO RUNOFF	
C-5	SOIL LOSS CONSTANT DUE TO LEACHING	C-6
C-6	COPC LOSS CONSTANT DUE TO VOLATILIZATION	C-7
SURF	ACE WATER AND SEDIMENT EQUATIONS	
C-7	DISSOLVED WATER PHASE CONCENTRATION	C-9
C-8	TOTAL WATER COLUMN CONCENTRATION	C-10
C-9	TOTAL WATER BODY LOAD	C-11
C-10	FRACTION IN WATER COLUMN AND BENTHIC SEDIMENT	
C-11	OVERALL TOTAL WATER BODY DISSIPATION RATE CONSTANT	C-14
C-12	DEPOSITION TO WATER BODY	
C-13	DIFFUSION LOAD TO WATER BODY	
C-14	IMPERVIOUS RUNOFF LOAD TO WATER BODY	
C-15	PERVIOUS RUNOFF LOAD TO WATER BODY	
C-16	EROSION LOAD TO WATER BODY	
C-17	UNIVERSAL SOIL LOSS EQUATION (USLE)	
C-18	SEDIMENT DELIVERY RATIO	
C-19	WATER COLUMN VOLATILIZATION LOSS RATE CONSTANT	C-22

APPENDIX C

TABLE OF CONTENTS (Continued)

EQU A	<u>ATION</u>	PAGE
C-20	BENTHIC BURIAL RATE CONSTANT	
C-21	OVERALL COPC TRANSFER RATE COEFFICIENT	
C-22	LIQUID PHASE TRANSFER COEFFICIENT	
C-23	GAS PHASE TRANSFER COEFFICIENT	
C-24	COPC CONCENTRATION IN BED SEDIMENT	
C-25	TOTAL WATER BODY CONCENTRATION	
TERR	ESTRIAL PLANT EQUATIONS	
C-26	PLANT CONCENTRATION DUE TO DIRECT DEPOSITION	C-30
C-27	PLANT CONCENTRATION DUE TO AIR-TO-PLANT TRANSFER	C-31
C-28	PLANT CONCENTRATION DUE TO ROOT UPTAKE	

APPENDIX C

LIST OF VARIABLES AND PARAMETERS

\mathcal{S}_z	=	Dimensionless viscous sublayer thickness (unitless)
: a	=	Viscosity of air (g/cm-s)
•w	=	Viscosity of water corresponding to water temperature (g/cm-s)
Δ_a	=	Density of air (g/cm ³ or g/m ³)
Δ_{w}	=	Density of water corresponding to water temperature (g/cm ³)
2	=	Temperature correction factor (unitless)
\mathcal{Q}_{bs}	=	Bed sediment porosity (L volume/L sediment)—unitless
2_{sw}	=	Soil volumetric water content (mL water/cm ³ soil)
SW		,
a	=	Empirical intercept coefficient (unitless)
A	=	Surface area of contaminated area (m ²)
A_I	=	Impervious watershed area receiving COPC deposition (m ²)
A_L	=	Total watershed area receiving COPC deposition (m ²)
A_W	=	Water body surface area (m ²)
b	=	Empirical slope coefficient (unitless)
BD	=	Soil bulk density (g soil/cm ³ soil)
Br	=	Plant-soil bioconcentration factor (unitless)
Bv	=	COPC air-to-plant biotransfer factor (mg COPC/kg DW plant)/(mg COPC/kg air)—unitless
C	=	USLE cover management factor (unitless)
C_{BS}	=	Bed sediment concentration (or bed sediment bulk density) (g/cm³ or kg/L)
C_d	=	Drag coefficient (unitless)
C_{dw}	=	Dissolved phase water concentration (mg COPC/L water)
Cs	=	Average soil concentration over exposure duration (mg COPC/kg soil)
C_{sb}	=	COPC concentration in bed sediment (mg COPC/kg sediment)
C_{wctot}	=	Total COPC concentration in water column (mg COPC/L water column)
C_{wtot}	=	Total water body COPC concentration including water column and bed
		sediment (g COPC/m³ water body) or (mg/L)
Cyv	=	Unitized yearly average air concentration from vapor phase (µg-s/g-m ³)
Cywv	=	Unitized yearly (water body or watershed) average air concentration
		from vapor phase (μg -s/g-m ³)
D_a	=	Diffusivity of COPC in air (cm ² /s)
d_{bs}	=	Depth of upper benthic sediment layer (m)
D_{S}	=	Deposition term (mg COPC/kg soil-yr)
d_{wc}	=	Depth of water column (m)
D_w	=	Diffusivity of COPC in water (cm ² /s)
D_{W} Dydp	=	Unitized yearly average dry deposition from particle phase (s/m²-yr)
Dytwp	=	Unitized yearly (water body or watershed) average total (wet and dry)
7···r		deposition from particle phase (s/m²-yr)
Dywp	=	Unitized yearly average wet deposition from particle phase (s/m²-yr)
√ ··· F		J. w. J. w. v. w. F. v. v. v. z.

Dywv	=	Unitized yearly average wet deposition from vapor phase (s/m²-yr)
Dywwv	=	Unitized yearly (water body or watershed) average wet deposition from
d_z	=	vapor phase (s/m²-yr) Total water body depth (m)
α_z		Total water body depth (III)
ER	=	Soil enrichment ratio (unitless)
$E_{ u}$	=	Average annual evapotranspiration (cm/yr)
f_{bs}	=	Fraction of total water body COPC concentration in benthic sediment (unitless)
Fw	=	Fraction of COPC wet deposition that adheres to plant surfaces (unitless)
f_{wc}	=	Fraction of total water body COPC concentration in the water column (unitless)
F_{v}	=	Fraction of COPC air concentration in vapor phase (unitless)
Н	=	Henry's Law constant (atm-m³/mol)
I	=	Average annual irrigation (cm/yr)
k	=	Von Karman's constant (unitless)
K	=	USLE erodibility factor (ton/acre)
k_b	=	Benthic burial rate constant $(yr^{\Box 1})$
Kd_{bs}	=	Bed sediment/sediment pore water partition coefficient
		(cm ³ water/g bottom sediment or L water/kg bottom sediment)
Kd_s	=	Soil-water partition coefficient (cm ³ water/g soil)
Kd_{sw}	=	Suspended sediment-surface water partition coefficient
		(L water/kg suspended sediment)
K_G	=	Gas phase transfer coefficient (m/yr)
K_L	=	Liquid phase transfer coefficient (m/yr)
kp	=	Plant surface loss coefficient (yr ⁻¹)
ks	=	COPC soil loss constant due to all processes (yr ⁻¹)
kse	=	COPC loss constant due to soil erosion (yr ⁻¹)
ksg	=	COPC loss constant due to biotic and abiotic degradation (yr ⁻¹)
ksl	=	COPC loss constant due to leaching (yr ⁻¹)
ksr	=	COPC loss constant due to surface runoff (yr ⁻¹)
ksv	=	COPC loss constant due to volatilization (yr ⁻¹)
k_{v}	=	Water column volatilization rate constant (yr ⁻¹)
K_{ν}	=	Overall COPC transfer rate coefficient (m/yr)
k_{wt}	=	Overall total water body dissipation rate constant (yr ⁻¹)
$L_{\it DEP}$	=	Total (wet and dry) particle phase and wet vapor phase COPC direct deposition load to water body (g/yr)
L_{dif}	=	Vapor phase COPC diffusion (dry deposition) load to water body (g/yr)
L_E	=	Soil erosion load (g/yr)
L_R	=	Runoff load from pervious surfaces (g/yr)
L_{RI}	=	Runoff load from impervious surfaces (g/yr)
L_T	=	Total COPC load to the water body (including deposition, runoff, and
LS	=	erosion) (g/yr) USLE length-slope factor (unitless)

OC_{sed}	= I	Fraction of organic carbon in bottom sediment (unitless)
$p^{\circ}_{\ _{o}}$		Liquid phase vapor pressure of chemical (atm)
p_{S}		Solid phase vapor pressure of chemical (atm)
$\stackrel{\circ}{P}$		Average annual precipitation (cm/yr)
PF		JSLE supporting practice factor (unitless)
Pd		Plant concentration due to direct deposition (mg COPC/kg DW)
Pr		Plant concentration due to root uptake (mg COPC/kg DW)
Pv	= I	Plant concentration due to air-to-plant transfer (mg COPC/g DW plissue or mg COPC/kg DW plant tissue)
Q	= (COPC-specific emission rate (g/s)
r	=	Interception fraction—the fraction of material in rain intercepted b
		vegetation and initially retained (unitless)
R	J =	Jniversal gas constant (atm-m 3/mol-K)
RO	= /	Average annual surface runoff from pervious areas (cm/yr)
RF		JSLE rainfall (or erosivity) factor (yr ⁻¹)
Rp	= I	nterception fraction of the edible portion of plant (unitless)
SD	= 5	Sediment delivery ratio (unitless)
♠Sf	= I	Entropy of fusion [$\triangle Sf/R = 6.79$ (unitless)]
SF	= 5	Slope factor (mg/kg-day) ⁻¹
ST	= 1	Whitby's average surface area of particulates (aerosols) = 3.5×10 -6 cm 2/cm 3 air for background plus local sources = 1.1×10 -5 cm 2/cm 3 air for urban sources
		1.1 × 10 -3 cm 2/cm 3 an 101 aroun sources
T_a		Ambient air temperature (K)
T_{I}		Time period at the beginning of combustion (yr)
T_2		Length of exposure duration (yr)
T_m		Melting point of chemical (K)
Тр		Length of plant exposure to deposition per harvest of edible portion
		plant (yr)
TSS		Total suspended solids concentration (mg/L)
T_{wk}		Water body temperature (K)
t _{1/2}	= I	Half-time of COPC (days)
Vdv		Ory deposition velocity (cm/s)
Vfx		Average volumetric flow rate through water body (m 3 /yr)
VG	= I	Empirical correction factor
W	= /	Average annual wind speed (m/s)
Xe	= U	Jnit soil loss (kg/m 2 -yr)
Yh		Ory harvest yield = $1.22 \times 10 11 \text{kg DW}$, calculated from the 1993 Upverage wet weight V_h of $1.35 \times 10 11 \text{kg (USDA 1994b)}$ and a
		everage wet weight <i>Yh</i> of 1.35×10 11 kg (USDA 1994b) and a conversion factor of 0.9 (Fries 1994)
Yh_i		Harvest yield of ith crop (kg DW)
111 _į	– I	Tai vest yield of thi crop (kg Dw)

- Yp = Yield or standing crop biomass of the edible portion of the plant (productivity) (kg DW/m 2)
- Zs = Soil mixing zone depth (cm)

SOIL CONCENTRATION DUE TO DEPOSITION (SOIL INGESTION EQUATIONS)

$$Cs = \frac{Ds \cdot [1 - \exp(-ks \cdot tD)]}{ks}$$

where

$$Ds = \frac{100 \cdot Q}{Z_s \cdot BD} \cdot \left[F_v \left(0.31536 \cdot Vdv \cdot Cyv + Dywv \right) + \left(Dydp + Dywp \right) \cdot (1 - F_v) \right]$$

<u>Variable</u>	Description	Value and Units
Cs	Average soil concentration over exposure duration	(mg COPC/kg soil)
Ds	Deposition term	(mg COPC/kg soil-yr)
tD	Time period over which deposition occurs	100 yr
ks	COPC soil loss constant due to all processes	Calculated using Equation C-2 (yr ⁻¹)
100	Units conversion factor	100 mg-cm ² /kg-cm ²
Q	COPC-specific emission rate	See Appendix A (g/s)
Z_s	Soil mixing zone depth	Untilled Soil = 1 cm
BD	Soil bulk density	1.5 g soil/cm ³ soil
F_{v}	Fraction of COPC air concentration in vapor phase	See Appendix B (unitless)

EQUATION C-1 (Continued)

SOIL CONCENTRATION DUE TO DEPOSITION (SOIL INGESTION EQUATIONS)

<u>Variable</u>	<u>Description</u>	Value and Units
0.31536	Units conversion factor	0.31536 m-g-s/cm-:g-yr
Vdv	Dry deposition velocity	3 cm/s
Cyv	Unitized yearly average air concentration from vapor phase	$(:g-s/g-m^3)$
Dywv	Unitized yearly average wet deposition from vapor phase	(s/m^2-yr)
Dydp	Unitized yearly average dry deposition from particle phase	(s/m^2-yr)
Dywp	Unitized yearly average wet deposition from particle phase	(s/m^2-yr)

COPC SOIL LOSS CONSTANT (SOIL INGESTION EQUATIONS)

ks = ksg + kse + ksr + ksl + ksv

<u>Variable</u>	Description	Value and Units
ks	COPC soil loss constant due to all processes	(yr^{-1})
ksg	COPC loss constant due to biotic and abiotic degradation	See Appendix B (yr ⁻¹)
kse	COPC loss constant due to soil erosion	0 yr ⁻¹
ksr	COPC loss constant due to surface runoff	See Equation C-4 (yr ⁻¹)
ksl	COPC loss constant due to leaching	See Equation C-5 (yr ⁻¹)
ksv	COPC loss constant due to volatilization	0 yr ⁻¹

SOIL LOSS CONSTANT DUE TO SOIL EROSION (SOIL INGESTION EQUATIONS)

$$kse = \frac{0.1 \cdot X_e \cdot SD \cdot ER}{BD \cdot Z_s} \cdot \left(\frac{Kd_s \cdot BD}{\Theta_{sw} + (Kd_s \cdot BD)} \right)$$

<u>Variable</u>	Description	Value and Units
kse	COPC loss constant due to soil erosion	$0 \mathrm{~yr}^{-1}$
0.1	Units conversion factor	$0.1 \text{ g-kg/cm}^2\text{-m}^2$
X_e	Unit soil loss	See Equation C-17 (kg/m²-yr)
SD	Sediment delivery ratio	Calculated using Equation C-18 (unitless)
ER	Soil enrichment ratio	Inorganics = 1 (unitless) Organics = 3 (unitless)
BD	Soil bulk density	1.5 g soil/cm ³ soil
Z_s	Soil mixing zone depth	Untilled = 1 cm
Kd_s	Soil-water partition coefficient	See Appendix B (mL [or cm ³] water/g soil)
Θ_{sw}	Soil volumetric water content	0.2 mL water/cm ³ soil

COPC LOSS CONSTANT DUE TO RUNOFF (SOIL INGESTION EQUATIONS)

$$ksr = \frac{RO}{\Theta_{sw} \cdot Z_s} \cdot \left(\frac{1}{1 + \left(Kd_s \cdot \frac{BD}{\Theta_{sw}} \right)} \right)$$

<u>Variable</u>	Description	Value and Units
ksr	COPC loss constant due to runoff	(yr ⁻¹)
RO	Average annual surface runoff from pervious areas	Site-specific (cm/yr)
$arTheta_{\!sw}$	Soil volumetric water content	0.2 mL water/cm ³ soil
Z_s	Soil mixing zone depth	Untilled = 1 cm
Kd_s	Soil-water partition coefficient	See Appendix B (mL [or cm ³] water/g soil)
BD	Soil bulk density	1.5 g soil/cm ³ soil

SOIL LOSS CONSTANT DUE TO LEACHING (SOIL INGESTION EQUATIONS)

$$ksr = \frac{P + I - RO - E_{v}}{\Theta_{sw} \cdot Z_{s} \cdot \left[1.0 + \left(\frac{BD \cdot K_{ds}}{\Theta_{sw}} \right) \right]}$$

<u>Variable</u>	Description	Value and Units
ksl	COPC loss constant due to leaching	(yr ⁻¹)
P	Average annual precipitation	18.06 to 164.19 cm/yr (Site-specific)
I	Average annual irrigation	0 to 100 cm/yr (Site-specific)
RO	Average annual surface runoff from pervious areas	Site-specific (cm/yr)
$E_{ u}$	Average annual evapotranspiration	35 to 100 cm/yr (Site-specific)
$arTheta_{\!\scriptscriptstyle SW}$	Soil volumetric water content	0.2 mL water/cm ³ soil
Z_s	Soil mixing zone depth	Untilled = 1 cm
Kd_s	Soil-water partition coefficient	See Appendix B (cm ³ water/g soil)
BD	Soil bulk density	1.5 g soil/cm ³ soil

COPC SOIL LOSS CONSTANT DUE TO VOLATILIZATION (SOIL INGESTION EQUATIONS)

$$ksv = \left[\frac{3.1536 \times 10^7 \cdot H}{Z_s \cdot KD_s \cdot R \cdot T_a \cdot BD}\right] \cdot \left[0.482 \cdot W^{0.78} \cdot \left(\frac{\mu_a}{\rho_a \cdot D_a}\right)^{-0.67} \cdot \left(\sqrt{\frac{4A}{\pi}}\right)^{-0.11}\right]$$

<u>Variable</u>	Description	Value and Units
ksv	COPC soil constant due to volatilization	0 yr ⁻¹
0.482	Empirical constant	0.482 (unitless)
0.78	Empirical constant	0.78 (unitless)
-0.67	Empirical constant	-0.67 (unitless)
-0.11	Empirical constant	-0.11 (unitless)
3.1536×10^7	Units conversion factor	$3.1536 \times 10^7 \text{ s/yr}$
H	Henry's Law constant	See Appendix B (atm-m ³ /mol)
Z_s	Soil mixing zone depth	Untilled = 1 cm
Kd_s	Soil-water partition coefficient	See Appendix B (cm ³ water/g soil)
R	Universal gas constant	8.205×10^{-5} atm-m ³ /mol-K
T_a	Ambient air temperature	298 K
BD	Soil bulk density	1.5 g soil/cm ³ soil
W	Average annual wind speed	3.9 m/s

EQUATION C-6 (Continued)

COPC SOIL LOSS CONSTANT DUE TO VOLATILIZATION (SOIL INGESTION EQUATIONS)

<u>Variable</u>	Description	Value and Units
μ_a	Viscosity of air	1.81x10 ⁻⁴ g/cm-s
$ ho_a$	Density of air	0.0012 g/cm^3
D_a	Diffusivity of COPC in air	See Appendix B (cm ² /s)
A	Surface area of contaminated area	1.0 m^2

DISSOLVED WATER PHASE CONCENTRATION (SURFACE WATER AND SEDIMENT EQUATIONS)

$$C_{dw} = \frac{C_{wctot}}{1 + Kd_{sw} \cdot TSS \cdot 1 \times 10^{-6}}$$

<u>Variable</u>	Description	Value and Units
C_{dw}	Dissolved water phase concentration	(mg COPC/L water)
C_{wctot}	Total COPC concentration in water column	Calculated using Equation C-8 (mg COPC/L water column)
Kd_{sw}	Suspended sediments/surface water partition coefficient	See Appendix B (L water/kg suspended sediment)
TSS	Total suspended solids concentration	2 to 300 mg/L (Site-specific)
1×10 ⁻⁶	Units conversion factor	1×10 ⁻⁶ kg/mg

TOTAL WATER COLUMN CONCENTRATION (SURFACE WATER AND SEDIMENT EQUATIONS)

$$C_{wctot} = f_{wc} \cdot C_{wtot} \cdot \frac{d_{wc} + d_{bs}}{d_{wc}}$$

<u>Variable</u>	Description	Value and Units
C_{wctot}	Total COPC concentration in water column	(mg COPC/L water column)
f_{wc}	Fraction of total water body COPC concentration in the water column	Calculated using Equation C-10 (unitless)
C_{wtot}	Total water body COPC concentration	Calculated using Equation C-25 (mg COPC/L water body [or g COPC/m³ water body])
d_{wc}	Depth of water column	Site-specific (m)
d_{bs}	Depth of upper benthic sediment layer	0.03 m

TOTAL WATER BODY LOAD (SURFACE WATER AND SEDIMENT EQUATIONS)

$$L_T = L_{DEP} + L_{dif} + L_{RI} + L_R + L_E$$

<u>Variable</u>	Description	Value and Units
L_T	Total COPC load to the water body	(g/yr)
L_{DEP}	Total (wet and dry) particle phase and wet vapor phase COPC direct deposition load to water body	Calculated using Equation C-12 (g/yr)
L_{dif}	Vapor phase COPC diffusion (dry deposition) load to water body	Calculated using Equation C-13 (g/yr)
L_{RI}	Runoff load from impervious surfaces	Calculated using Equation C-14 (g/yr)
L_R	Runoff load from pervious surfaces	Calculated using Equation C-15 (g/yr)
L_E	Soil erosion load	Calculated using Equation C-16 (g/yr)

FRACTION IN WATER COLUMN AND BENTHIC SEDIMENT (SURFACE WATER AND SEDIMENT EQUATIONS)

$$f_{wc} = \frac{\left(1 + Kd_{sw} \cdot TSS \cdot 1 \times 10^{-6}\right) \cdot d_{wc} / d_{z}}{\left(1 + Kd_{sw} \cdot TSS \cdot 1 \times 10^{-6}\right) + d_{wc} / d_{z} + \left(\Theta_{bs} + Kd_{bs} \cdot C_{BS}\right) \cdot d_{bs} / d_{z}}$$

$$f_{bs} = 1 - f_{wc}$$

<u>Variable</u>	<u>Description</u>	Value and Units
f_{wc}	Fraction of total water body COPC concentration in the water column	(unitless)
f_{bs}	Fraction of total water body COPC concentration in benthic sediment	(unitless)
Kd_{sw}	Suspended sediment/surface water partition coefficient	See Appendix B (L [or cm ³] water/kg suspended sediment)
TSS	Total suspended solids concentrations	2 to 300 mg/L (Site-specific)
1×10^{-6}	Units conversion factor	1×10 ⁻⁶ kg/mg
d_{wc}	Depth of water column	Site-specific (m)
d_{bs}	Depth of upper benthic sediment layer	0.03 m
d_z	Total water body depth	Site-specific (m)
C_{BS}	Bed sediment concentration (or bed sediment bulk density)	1.0 g/cm ³ (or kg/L)
\mathcal{O}_{bs}	Bed sediment porosity	$0.6~L_{water}/L_{sediment}$

EQUATION C-10 (Continued)

FRACTION IN WATER COLUMN AND BENTHIC SEDIMENT (SURFACE WATER AND SEDIMENT EQUATIONS)

Kd_{bs}	Bed sediment/sediment pore water partition coefficient	See Appendix B (L [or cm ³] water/kg
		bottom sediment)

OVERALL TOTAL WATER BODY DISSIPATION RATE CONSTANT (SURFACE WATER AND SEDIMENT EQUATIONS)

$$k_{wt} = f_{wc} \cdot k_v + f_{bs} \cdot k_b$$

<u>Variable</u>	Description	Value and Units
k_{wt}	Overall total water body dissipation rate constant	(yr ⁻¹)
f_{wc}	Total water column concentration	Calculated using Equation C-8 (unitless)
k_{v}	Water column volatilization rate constant	Calculated using Equation C-19 (yr ⁻¹)
f_{bs}	Fraction in water column and benthic sediment	Calculated using Equation C-10 (unitless)
k_b	Benthic burial rate constant	Calculated using Equation C-20 (yr ⁻¹)

DEPOSITION TO WATER BODY (SURFACE WATER AND SEDIMENT EQUATIONS)

$$L_{DEP} = Q \cdot [F_v \cdot Dywwv + (1.0 - F_v) \cdot Dytwp] \cdot A_w$$

<u>Variable</u>	<u>Description</u>	Value and Units
L_{DEP}	Total (wet and dry) particle phase and wet vapor phase direct deposition load to water body	(g/yr)
Q	COPC specific emission rate	See Appendix A (g/s)
$F_{ u}$	Fraction of COPC air concentration in vapor phase	See Appendix B (unitless)
Dywwv	Unitized yearly (water body or watershed) average wet deposition from particle phase	(s/m^2-yr)
Dytwp	Unitized yearly (water body or watershed) average total (wet and dry) deposition from vapor phase	(s/m^2-yr)
A_w	Water body surface area	(m^2)

DIFFUSION LOAD TO WATER BODY (SURFACE WATER AND SEDIMENT EQUATIONS)

$$L_{dif} = \frac{K_{v} \cdot Q \cdot F_{v} \cdot Cywv \cdot A_{w} \cdot 1 \times 10^{-6}}{\frac{H}{R \cdot T_{wk}}}$$

<u>Variable</u> <u>Description</u> <u>Value and Units</u>	<u>s</u>
L_{dif} Dry vapor phase diffusion load to water body (g/yr)	
K_{ν} Overall COPC transfer rate coefficient Calculated using	g Equation C-21 (m/yr)
Q COPC specific emission rate See Appendix A	(g/s)
F_{ν} Fraction of COPC air concentration in vapor phase See Appendix B	(unitless)
Cywv Unitized yearly watershed air concentration from vapor phase (μg-s/g-m³)	
A_w Water body surface area Site-specific (m ²	()
10^{-6} Units conversion factor 10^{-6} g/ μ g	
H Henry's Law constant See Appendix B	(atm-m ³ /mol)
R Universal gas constant 8.205x10-5 atm-	·m³/mol-K
T_{wk} Water body temperature 298 K	

IMPERVIOUS RUNOFF LOAD TO WATER BODY (SURFACE WATER AND SEDIMENT EQUATIONS)

$$L_{RI} = Q \cdot [F_v \cdot Dywwv + (1.0 - F_v) \cdot Dytwp] \cdot A_I$$

<u>Variable</u>	Description	Value and Units
L_{RI}	Runoff load from impervious surfaces	(g/yr)
Q	COPC specific emission rate	See Appendix A (g/s)
F_{v}	Fraction of COPC air concentration in vapor phase	See Appendix B (unitless)
Dywwv	Unitized yearly (water body or watershed) average wet deposition from vapor phase	(s/m²-yr)
Dytwp	Unitized yearly (water body or watershed) average total (wet and dry) deposition from particle phase	(s/m²-yr)
A_I	Impervious watershed area receiving COPC deposition	Site-specific (m ²)

PERVIOUS RUNOFF LOAD TO WATER BODY (SURFACE WATER AND SEDIMENT EQUATIONS)

$$L_R = RO \cdot (A_L - A_I) \cdot \frac{Cs \cdot BD}{\Theta_{sw} + Kd_s \cdot BD} \cdot 0.01$$

<u>Variable</u>	Description	Value and Units
L_R	Runoff load from pervious surfaces	(g/yr)
RO	Average annual surface runoff from pervious areas	Site-specific (cm/yr)
A_L	Total watershed area receiving COPC deposition	Site-specific (m ²)
A_I	Impervious watershed area receiving COPC deposition	Site-specific (m ²)
Cs	Average soil concentration over exposure duration	Calculated using Equation C-1 (mg COPC/kg soil)
BD	Soil bulk density	1.5 g soil/cm ³ soil
$arTheta_{\!sw}$	Soil volumetric water content	0.2 mL water/cm ³ soil
Kd_s	Soil-water partition coefficient	See Appendix B (cm ³ water/g soil)
0.01	Units conversion factor	$0.01 \text{ kg-cm}^2/\text{mg-m}^2$

EROSION LOAD TO WATER BODY (SURFACE WATER AND SEDIMENT EQUATIONS)

$$L_E = X_e \cdot (A_L - A_I) \cdot SD \cdot ER \cdot \frac{Cs \cdot Kd_s \cdot BD}{\Theta_{sw} + Kd_s \cdot BD} \cdot 0.001$$

<u>Variable</u>	<u>Description</u>	Value and Units
L_E	Soil erosion load	(g/yr)
X_e	Unit soil loss	Calculated using Equation C-17 (kg/m²-yr)
A_L	Total watershed area receiving deposition	Site-specific (m ²)
A_I	Area of impervious watershed receiving deposition	Site-specific (m ²)
SD	Watershed sediment delivery ratio	Calculated using Equation C-18 (unitless)
ER	Soil enrichment ratio	Inorganic COPCs = 1 (unitless) Organic COPCs = 3 (unitless)
Cs	Average soil concentration over exposure duration	Calculated using Equation C-1 (mg COPC/kg soil)
Kd_s	Soil-water partition coefficient	See Appendix B (mL [or cm ³] water/g soil)
BD	Soil bulk density	1.5 g/cm ³
$arTheta_{\!\scriptscriptstyle SW}$	Soil volumetric water content	0.2 mL water/cm ³ soil
0.001	Units conversion factor	$0.001 \text{ kg-cm}^2/\text{mg-m}^3$

UNIVERSAL SOIL LOSS EQUATION (USLE) (SURFACE WATER AND SEDIMENT EQUATIONS)

$$X_e = RF \cdot K \cdot LS \cdot C \cdot PF \cdot \frac{907.18}{4047}$$

<u>Variable</u>	Description	Value and Units
X_e	Unit soil loss	(kg/m^2-yr)
RF	USLE rainfall (or erosivity) factor	50 to 300 yr ⁻¹ (Site-specific)
K	USLE erodibility factor	Site-specific (ton/acre)
LS	USLE length-slope factor	Site-specific (unitless)
C	USLE cover management factor	Site-specific (unitless)
PF	USLE supporting practice factor	Site-specific (unitless)
907.18	Units conversion factor	907.18 kg/ton
4047	Units conversion factor	4047 m ² /acre

SEDIMENT DELIVERY RATIO (SURFACE WATER AND SEDIMENT EQUATIONS)

$$SD = a \cdot (A_L)^{-b}$$

<u>Variable</u>	Description	Value and Uni	i <u>ts</u>
SD	Watershed sediment delivery ratio	(unitless)	
a	Empirical intercept coefficient	Watershed Area (mi ²) ≤ 0.1 > 0.1 but ≤ 1.0 > 1.0 but ≤ 10 > 10 but ≤ 100 > 100	1.4
A_L	Total watershed area receiving deposition	Site-specific (n	n^2)
b	Empirical slope coefficient	0.125 (unitless))

WATER COLUMN VOLATILIZATION LOSS RATE CONSTANT (SURFACE WATER AND SEDIMENT EQUATIONS)

$$k_{v} = \frac{K_{v}}{d_{z} \cdot \left(1 + Kd_{sw} \cdot TSS \cdot 1 \times 10^{-6}\right)}$$

<u>Variable</u>	Description	Value and Units
$k_{ u}$	Water column volatilization rate constant	(yr ⁻¹)
$K_{ u}$	Overall COPC transfer rate coefficient	Calculated using Equation C-21 (m/yr)
Kd_{sw}	Suspended sediment/surface water partition coefficient	See Appendix B (L water/kg suspended sediments)
d_z	Total water body depth	Site-specific (m)
TSS	Total suspended solids concentration	2 to 300 mg/L (Site-specific)
1×10 ⁻⁶	Units conversion factor	1×10 ⁻⁶ kg/mg

BENTHIC BURIAL RATE CONSTANT (SURFACE WATER AND SEDIMENT EQUATIONS)

$$k_b = \left(\frac{X_e \cdot A_L \cdot SD \cdot 1 \times 10^3 - Vf_x \cdot TSS}{A_w \cdot TSS}\right) \cdot \left(\frac{TSS \cdot 1 \times 10^{-6}}{C_{BS} \cdot d_{bs}}\right)$$

<u>Variable</u>	Description	Value and Units
k_b	Benthic burial rate constant	(yr ⁻¹)
X_e	Unit soil loss	Calculated using Equation C-17 (kg/m²-yr)
A_L	Total watershed area receiving deposition	Site-specific (m ²)
SD	Watershed sediment delivery ratio	Calculated using Equation C-18 (unitless)
1×10^3	Units conversion factor	1×10^3 g/kg
Vf_x	Average volumetric flow rate through water body	Site-specific (m³/yr)
TSS	Total suspended solids concentration	2 to 300 mg/L (Site-specific)
A_w	Water body surface area	Site-specific (m ²)
1×10^{-6}	Units conversion factor	1×10 ⁻⁶ kg/mg
C_{BS}	Bed sediment concentration	1.0 g/cm^3
d_{bs}	Depth of upper benthic sediment layer	0.03 m

OVERALL COPC TRANSFER RATE COEFFICIENT (SURFACE WATER AND SEDIMENT EQUATIONS)

$$K_{v} = \left[K_{L}^{-1} + \left(K_{G} \cdot \frac{H}{R \cdot T_{wk}}\right)^{-1}\right]^{-1} \cdot \Theta^{(T_{wk}-293)}$$

<u>Variable</u>	Description	Value and Units
$K_{ u}$	Overall COPC transfer rate coefficient	(m/yr)
K_L	Liquid phase transfer coefficient	Calculated using Equation C-22 (m/yr)
K_G	Gas phase transfer coefficient	Calculated using Equation C-23 (m/yr)
H	Henry's Law constant	See Appendix B (atm-m ³ /mol)
R	Universal gas constant	$8.205 x 10^{-5}$ atm-m ³ /mol-K
T_{wk}	Water body temperature	298 K
Θ	Temperature correction factor	1.026 (unitless)

LIQUID PHASE TRANSFER COEFFICIENT (SURFACE WATER AND SEDIMENT EQUATIONS)

For flowing streams or rivers

$$K_L = \sqrt{\frac{(1 \times 10^{-4}) \cdot D_W \cdot u}{d_z}} \cdot 3.1536 \times 10^7$$

For quiescent lakes or ponds

$$K_L = \left(C_d^{0.5} \cdot W\right) \cdot \left(\frac{\rho_a}{\rho_w}\right)^{0.5} \cdot \frac{k^{0.33}}{\lambda_z} \cdot \left(\frac{\mu_w}{\rho_w \cdot D_w}\right)^{-0.67} \cdot 3.1536 \times 10^7$$

<u>Variable</u>	Description	Value and Units
K_L	Liquid phase transfer coefficient	(m/yr)
D_w	Diffusivity of COPC in water	See Appendix B (cm ² /s)
U	Current velocity	Site-specific (m/s)
d_Z	Total water body depth	Site-specific (m)
3.1536×10^{7}	Units conversion factor	$3.1536 \times 10^7 \text{ s/yr}$
C_d	Drag coefficient	0.0011 (unitless)
W	Average annual wind speed	3.9 m/s

EQUATION C-22 (Continued)

LIQUID PHASE TRANSFER COEFFICIENT (SURFACE WATER AND SEDIMENT EQUATIONS)

<u>Variable</u>	<u>Description</u>	Value and Units
$ ho_a$	Density of air	0.0012 g/cm^3
$ ho_{\scriptscriptstyle W}$	Density of water	1 g/cm ³
k	von Karman's constant	0.4 (unitless)
λ_z	Dimensionless viscous sublayer thickness	4 (unitless)
$\mu_{\scriptscriptstyle \! W}$	Viscosity of water corresponding to water temperature	$1.69 \times 10^{-2} \text{ g/cm-s}$

GAS PHASE TRANSFER COEFFICIENT (SURFACE WATER AND SEDIMENT EQUATIONS)

For flowing streams and rivers

$$K_G = 36500 \, m/yr$$

For quiescent lakes or ponds

$$K_G = \left(C_d^{0.5} \cdot W\right) \cdot \frac{k^{0.33}}{\lambda_z} \cdot \left(\frac{\mu_a}{\rho_a \cdot D_a}\right)^{-0.67} \cdot 3.1536 \times 10^7$$

<u>Variable</u>	Description	Value and Units
K_G	Gas phase transfer coefficient	(m/yr)
C_d	Drag coefficient	0.0011 (unitless)
W	Average annual wind velocity	3.9 m/s
k	von Karman's constant	0.4 (unitless)
λ_z	Dimensionless viscous sublayer thickness	4 (unitless)
μ_a	Viscosity of air	$1.81 \times 10^{-4} \text{ g/cm-s}$
$ ho_a$	Density of air	0.0012 g/cm^3
D_a	Diffusivity of COPC in air	See Appendix B (cm ² /s)
3.1536×10^{7}	Units conversion factor	$3.1536 \times 10^7 \text{ s/yr}$

COPC CONCENTRATION IN BED SEDIMENT (SURFACE WATER AND SEDIMENT EQUATIONS)

$$C_{sb} = f_{bs} \cdot C_{wtot} \cdot \frac{Kd_{bs}}{\Theta_{bs} + Kd_{bs} \cdot C_{BS}} \cdot \frac{d_{wc} + d_{bs}}{d_{bs}}$$

<u>Variable</u>	Description	Value and Units
C_{sb}	Concentration sorbed to bed sediment	(mg COPC/kg sediment)
f_{bs}	Fraction benthic sediment in water column and bed sediment	Calculated using Equation C-10 (unitless)
C_{wtot}	Total water body concentration	Calculated using Equation C-25 (mg COPC/ L water body [or g COPC/cm³ water body])
Kd_{bs}	Bed sediment/sediment pore water partition coefficient	See Appendix B (L water/kg bed sediment [or cm ³ water/g bed sediment])
$\mathcal{\Theta}_{bs}$	Bed sediment porosity	0.6 (unitless [L $_{pore\ volume}/L$ $_{sediment}$])
C_{BS}	Bed sediment concentration (or sediment bulk density)	1.0 g/cm ³
d_{wc}	Depth of water column	Site-specific (m)
d_{bs}	Depth of upper benthic sediment layer	0.03 m

TOTAL WATER BODY CONCENTRATION (SURFACE WATER AND SEDIMENT EQUATIONS)

$$C_{wtot} = \frac{L_T}{V f_x \cdot f_{wc} \cdot k_{wt} \cdot A_w \cdot (d_{wc} + d_{bs})}$$

<u>Variable</u>	<u>Description</u>	Value and Units
C_{wtot}	Total water body COPC concentration, including water column and bed sediment	(g COPC/m³ water body [equivalent to mg COPC/L water body])
L_T	Total COPC load to the water body, including deposition, runoff, and erosion	Calculated using Equation C-9 (g/yr)
Vf_x	Average volumetric flow rate through water body	Site-specific (m³/yr)
f_{wc}	Fraction of water body COPC concentration in the water column	0 to 1(unitless); Calculated using Equation C-10
k_{wt}	Overall total water body dissipation rate constant	Calculated using Equation C-11 (yr ⁻¹)
A_w	Water body surface area	Site-specific (m ²)
d_{wc}	Depth of water column	Site-specific (m)
d_{bs}	Depth of upper benthic sediment layer	0.03 m

PLANT CONCENTRATION DUE TO DIRECT DEPOSITION (TERRESTRIAL PLANT EQUATIONS)

$$Pd = \frac{1000 \cdot Q \cdot (1 - F_v) \cdot [Dydp + (Fw \cdot Dywp)] \cdot Rp \cdot [1.0 - \exp(-kp \cdot Tp)]}{Yp \cdot kp}$$

<u>Variable</u>	<u>Description</u>	Value and Units
Pd	Concentration of COPC in plant due to direct (wet and dry) deposition Units conversion factor	(mg COPC)
1000		1000 mg/g
Q	COPC specific emission rate	See Appendix A (g/s)
F_v	Fraction of COPC air concentration in vapor phase	See Appendix B (unitless)
Dydp	Unitized yearly average dry deposition from particle phase	(s/m^2-yr)
Rp	Interception fraction of the edible portion of the plant	0.39 (unitless)
Fw	Fraction of COPC wet deposition that adheres to plant surfaces	Anions = 0.2 (unitless) Cations and most Organics = 0.6 (unitless)
Dywp	Unitized yearly wet deposition in particle phase	(s/m^2-yr)
kp	Plant surface loss coefficient	18 yr ⁻¹
Tp	Length of plant exposure to deposition per harvest of edible plant portion	0.164 yr
Yp	Yield or standing crop biomass of the edible portion of the plant (productivity)	2.24 kg DW/m^2

PLANT CONCENTRATION DUE TO AIR-TO-PLANT TRANSFER (TERRESTRIAL PLANT EQUATIONS)

$$Pv = Q \cdot F_{v} \cdot \frac{Cyv \cdot Bv \cdot VG}{\rho_{a}}$$

<u>Variable</u>	Description	Value and Units
Pv	Concentration of COPC in plant due to air-to-plant transfer	μg COPC/g DW (equivalent to mg COPC/kg DW)
Q	COPC-specific emission rate	See Appendix A (g/s)
F_{v}	Fraction of COPC air concentration in vapor phase	See Appendix B (unitless)
Суч	Unitized yearly average air concentration from vapor phase	$(\mu g$ -s/g-m ³ $)$
BV	COPC air-to-plant biotransfer factor	See Appendix B (unitless) or (mg COPC/g DW)/ (mg COPC/g DW)
VG	Empirical correction factor	COPCs with a log $K_{ow} > 4 = 0.01$ (unitless) COPCs with a log $K_{ow} < 4 = 1.0$ (unitless)
$ ho_a$	Density of air	1200.0 g/m^3

PLANT CONCENTRATION DUE TO ROOT UPTAKE (TERRESTRIAL PLANT EQUATIONS)

 $Pr = Cs \cdot Br$

<u>Variable</u>	Description	Value and Units
Pr Cs	Concentration of COPC in plant due to root uptake Average soil concentration over exposure duration	(mg COPC/kg DW) Calculated using Equation C-1 (mg COPC/kg soil)
Br	Plant-soil bioconcentration factor	See Appendix B (unitless or [mg COPC/kg DW plant]/[mg COPC/kg soil])